An assembly of identical spring-mass systems is placed on a smooth horizontal surface as shown. Initially the springs are relaxed. The left mass is displaced to the left while the right mass is displaced to the right and released. The resulting collision is elastic. The time period of the oscillations of the system is :-
$2\pi \sqrt {\frac{{2M}}{k}} $
$2\pi \sqrt {\frac{M}{{2k}}} $
$2\pi \sqrt {\frac{M}{k}} $
$\pi \sqrt {\frac{M}{k}} $
A mass of $2\,kg$ is attached to the spring of spring constant $50 \,Nm^{-1}$. The block is pulled to a distance of $5 \,cm $ from its equilibrium position at $x= 0$ on a horizontal frictionless surface from rest at $t = 0$. Write the expression for its displacement at anytime $t$.
Aheavy brass sphere is hung from a light spring and is set in vertical small oscillation with a period $T.$ The sphere is now immersed in a non-viscous liquid with a density $1/10\,th$ the density of the sphere. If the system is now set in vertical $S.H.M.,$ its period will be
A spring of force constant $k$ is cut into two pieces such that one piece is double the length of the other. Then the long piece will have a force constant of
An assembly of identical spring-mass systems is placed on a smooth horizontal surface as shown. At this instant, the springs are relaxed. The left mass is displaced to the/left and theiright mass is displaced to the right by same distance and released. The resulting collision is elastic. The time period of the oscillations of system is
A particle executes $SHM$ with amplitude of $20 \,cm$ and time period is $12\, sec$. What is the minimum time required for it to move between two points $10\, cm$ on either side of the mean position ..... $\sec$ ?